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Abstract-The paper presents the idea of semi-preservation in nonisothermal cascade-wake-flows. In contrast 
with the self-similarity concept, the evolution of semi-preserving flows is described in terms of characteristic 
velocity and temperature scales, separate for the mean and turbulent motion. Transport equations, of 
momentum and heat allow one to deduce the mutual correlations between individual scales and to derive a 
simple formula for turbulent Prandtl number, expressing Pr, in terms of mean-flow parameters only. Finally, 

the theoretical predictions are confronted with authors’ own experimental data. 

1. INTRODUCTION 

THE processes of heat and mass transfer as well as the 
evolution of a turbulent flow pattern behind a row of 
heated symmetrical bodies have been the object of great 
interest both from the theoretical and practical point of 
view. The development of the subject can be traced in a 
number of papers and scientific reports. This problem 
was probably undertaken for the first time in 1936 by 
Gran Olsson [l] who, on the basis of Prandtl’s mixing- 
length theory, derived the relationships describing the 
mean-flow evolution in the abscence of a longitudinal 
pressure gradient. His measurements, confined to the 
mean quantities only, pointed out that velocity defect as 
well as temperature excess decayed in the downstream 
direction at a rate inversely proportional to the 
streamwise coordinate xi. 

The turbulent flow pattern behind a row of parallel 
rods was also studied by Sato [2] as well as by Tamaki 
and Oshima [3] in the early 1950s. The empirical data 
obtained by Sato revealed that turbulence energy 
decayed in the downstream direction according to 
the power-law dependence upon the streamwise co- 
ordinate xi, with the power indices increasing 
monotonously with the frequency of turbulent eddies. 
On the other hand the eddy viscosity coefficient vT was 
found to be nearly constant in all cross-sections of the 
flow, increasing slightly with the distance from the 
rods. 

On the contrary, Tamaki and Oshima in their 
experiment found vT to be a decreasing function of 
coordinate x1, approximately according to the relation 

vT = x1 - t . A similar conclusion was drawn by Klatt [4], 
who stated that eddy viscosity coefficient appeared to 
be the decaying power function of the distance from the 
grid. 

Evolution of Reynolds stresses and eddy viscosity 
behind the row of symmetrical bodies in a wake-flow 
with constant longitudinal pressure gradient has been 
analysed by Elsner and Wilczynski [S, 63. They have 
pointed out that the positive value of ap/%x, causes the 

growth of the overall turbulence level, while the 
negative pressure gradient accelerates the mean 
velocity field equalization and suppresses the turbulent 
fluctuations of the flowing medium. According to [6], 
the eddy viscosity coefficient vT decreases considerably 
in the downstream direction and in the far-flow region it 
appears to be an increasing function of the longitudinal 
pressure gradient. 

A similar type of flow was analysed experimentally 
by Matsui [7] who found that when the row-pitch to 
rod-diameter ratio became sufficiently small, the mean 
velocity and temperature profiles lost their usual 
periodicity. 

The problem of turbulent heat transfer and its 
dependence upon turbulence macroscales was in- 
vestigated by Kuhn [8] in 2D flows behind the grid of 
bars with several specially collocated heat sources, 
consisting of fine, electrically heated wires. The 
experiment pointed out that the eddy conductivity 
increased with the growth of turbulence macroscales as 
well as with the intensity of velocity fluctuations. 
Similar studies were also carried out by Kuhn [9] four 
years later in a flow behind an oscillating grid where the 
macroscales as well as the rate of heat spread were 
considerably higher than those in usual flows behind 
the stationary grids. 

For the first time the idea of semi-preservation in an 
isothermal cascade-wake-flow has been formulated by 
Elsner [lo]. In contrast with the self-similarity 
hypothesis, which is too well known to need further 
description, the idea of semi-preservation assumes that 
the overall flow pattern at a certain distance behind the 
cascade of symmetrical bodies may be described by 
means of two velocity scales, different for the mean and 
turbulent motion and decreasing according to a power 
law in the downstream direction. 

The main purpose ofthis report is to extend the semi- 
preservation idea over the processes of turbulent heat 
transfer in nonisothermal cascade-wake-flows. We 
particularly focused our attention on the evolution of 
eddy diffusion coefficients for momentum and heat, 
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NOMENCLATURE 

UT coefficient of turbulent heat diffusion 
F, F,, fi2, fi, fs, f29 semi-preservation 

functions defined by equation (9) 
H flow overheat parameter defined by 

equation (20) 
ki, kg, k,,, k,g exponent indices in equation 

(15) 
Pr, turbulent Prandtl number 
R, *, R,g correlation coefficients defined by 

equation (10) 

s129 S2$ exponent indices in equation (15) 
t cascade pitch (Fig. 1) 
U, streamwise component of mean velocity 

UhIY U,” average values of mean velocity 
according to equations (1) and (21), 
respectively 

u*, u* mean and fluctuating velocity scales 
ui fluctuating velocity in xi direction 
xi Cartesian coordinates. 

Greek symbols 

? relative coordinate 
0 mean temperature 

@“, 0,” average values of mean temperature 
according to equations (2) and (21) 
respectively 

O*, 9* mean and fluctuating temperature 
scales 

9 fluctuating temperature 

x, k, exponential indices in equation (15) 
vT coefficient of eddy viscosity. 

Other symbols 
’ denotes derivative with respect to the 

relative coordinate 1 = x,/t 
- denotes the time average values of 

turbulent quantities. 

respectively, in order to check the behaviour of 
turbulent Prandtl number in this type of flow. 

2. SEMI-PRESERVATION OF 
NONISOTHERMAL CASCADE-WAKE-FLOW 

The theoretical approach to the evolution ofboth the 
velocity and temperature fields behind a row of slightly 
heated flat plates (Fig. 1) may be considerably simplified 
by the assumption that the amount of heat supplied to 
the fluid is too small to a.tfect the dynamics of the flow. 
Under such circumstances it seems reasonable to 
expect that the variation of fluid density in the whole 
flow region can also be neglected which allows the 
introduction of the reference values of velocity U, and 

FIG. 1. The schematic sketch of mean velocity and temperature 
profiles. 

temperature OM, averaged over the cascade pitch t 
according to the relationships 

s 

* 
U,(x,, x2) dx, = const (1) 

0 

1 ’ 
OM = ~ 

s tuhr 0 
0(x,, x,)U,(x,, x2) dx, = const. (2) 

At a sufficient distance behind the plates, in the region 
of uniform static pressure, the equations of turbulent 
motion and heat transfer may be written in a simplified 
form 

u,~+jgu~=o 
1 2 

u1~+5~=0. 
1 ax2 

(3) 

Taking advantage of the Boussinesq concept and 
expressing correlations UZ and uq in terms of eddy 
diffusion coefficients 

-%U2 

vT =au,laxz 

-Uii 

aT =aolax, 

(5) 

(6) 

which, according to numerous opinions [2,3,5,6], are 
supposed to have constant values in the x,-direction, it 
is convenient to rewrite equation (3) and (4) in the form 

u au, v a% o 

’ ax, Tax:= 

U,~-aTf-f-$=O. 
1 2 

(7) 

(8) 



Let us assume that the type offlow considered develops Following the experimental evidence let us assume 
in a semi-preserving mode in which the overall flow that at a certain distance xi > xi0 all the quantities 
pattern may be described by means of two velocity appearinginEquations(9)and(lO)showthepower-law 
(U*, u*) and two temperature (O*, 9*) scales, different dependence upon the streamwise coordinate xi -a, 
for the mean (U*, O*) and turbulent (u*, 9*) motions. where a determines the position of virtual origin of flow. 
The semi-preserving relations utilizing the nondimen- Without loss of generality the value of n will be put to 
sional functions F and f of the relative coordinate zero so that the functional relationships considered 
r~ = x,/t can be formulated as before may be expressed in the form 

U,(% x2) = UC U*(x,)F(?) 

?(J& x2) = u*%Jf;(rl) 

a,u,(x,, ~2) = RMx,)a*%r)fi~(tl) 
-s12 

aT(x,, ~2) = R:9(~1)~*(~1)Q*(~l)fi$(~). (9) 

where the symbols RT2 and R$ designate the 
maximum values of the correlation coefficients 

R12h ~2) = ($2,2 ~ = RT2(~I)FRh) (104 
where the subscript 0 denotes the values attributed to 
the coordinate x1,,. 

GJ 

Substituting the above relations in equations (10) 

R29h ~2) = - = R:~hMtl). VW 
and (11) we are able to ascertain the additional 

b-an correlations between individual power indices 

Now, if relations (9) are introduced into equations (3) k12 = ?C+l; k2g = K~+ 1 
and (4) or (7) and (8), respectively, and furthermore, if we s 

(16) 

assume that at a sufficient distance behind the plates 
12 = rc+l-2k; s,$ = rco+l-(k+kg). 

V/U, << 1; W/OM << 1 
Because of a general tendency towards the stabilization 
of isotropic structure observed in majority of free 

then, after neglecting the quantities ofthe second order, turbulent flows, both the correlation coefficients R,, 

we obtain and R,g should decay along the coordinate xi, hence 

tUt.4 dU* f;z 
--=-=cl (114 

ic+l = ki2 > 2k; ice+1 = k2g > k+kg. (17) 
R:,u** dx, F 

tU, dO* -f&J 
p-=F,=C2 R* u*9* 29 dx 1 

and respectively 

t2Ur,, dU* F” -_=_-_c 
v,U* dx, F 3 

It is worth keeping in mind that the assumption of self- 

(lib) 
similarity immediately gives K = rce = k = kg = 1, 
which corresponds to the constant values of correla- 
tion coefficients R,, and R,&,, = s,g = 0) in the 
downstream direction. 

(124 
On the other hand, when equations (11) and (15) are 

combined, both eddy transport coefficients vr and uT 

t2U, dO* F” 
appear to be inversely proportional to the streamwise 

-__8= 
F, ‘@ (12b) 

coordinate x1, according to the formulae 
a,@* dx 1 

The area in which equations (11) and (12) are fulfilled for 
K&t* 1 

any arbitrarily chosen values of coordinates xi and x2 
y’=F< 

has been called the ‘semi-preserving’ region of an K,U,t* 1 
nonisothermal cascade-wake-flow [lo]. 

Assuming cJ = cq = -4n* one can easily obtain 
+=7x, 

from equations (11) and (12) the formulae which imply the constant value of the turbulent Prandtl 

F(q) = F,(q) = cos 27~~ (13) number 

fi2(q) = 5 sin 27~~ 
2k 

(14a) 

fig(q)= 2 sin 2nq 
The relations derived above clearly show that in order 

(14b) to evaluate the quantities vT, a, and Pr, there is no need 
to measure the correlations u1u2 and uqbut it is quite 

describing the lateral distributions of the quantities 
U,, 0, uxand uqin a semi-preserving region offlow. 

enough to determine the evolution ofmean velocity and 
temperature fields. 

Semi-preservation of momentum and heat transfer in cascade-wake-flows 295 
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3. EXPERIMENTAL APPARATUS 
AND PROCEDURE 

In order to check the validity of the semi- 
preservation idea outlined in the previous section, a set 
of the experimental investigations has been performed 
in a low-speed open circuit wind tunnel shown 
schematically in Fig. 2. The tested cascade consisted of 
five electrically heated metal plates having width 
b = 80 mm, thickness g = 10 mm, length I = 200 mm 
(measured in the x,-direction) and spaced (see Fig. 1) at 
a distance t = 55 mm from one another. 

The flexible top and bottom walls of the measuring 
section could be suitably adjusted in order to 
compensate for the longitudinal increase of the end- 
wall boundary-layer thickness and to fulfill the 
conditions p(xi) = const and t(xl) = const (see Fig. 1). 
The traversing mechanism mounted on the upper wall 
(Fig. 2) allowed the probes to move in the x,-direction 
with an accuracy up to 0.01 mm. 

The mean temperature and velocity fields were 
determined respectively by means of a thermistor with 
digital readout and a Pitot tube, with the accuracy of 
the pressure reading about 0.7 Pa. Themeasurements of 
the turbulent quantities such as Reynolds stresses, 
temperature variance and velocity-temperature corre- 
lation were carried out by means of a three-channel 
DISA 55M System hot-wire anemometer. The block 
diagram of the setups used for measurements of 
particular turbulent quantities are shown in Fig. 3. 
During the experiment the following DISA-sensors 
were applied : x -probe type 55P61, temperature 
compensated probe 55P71 and resistance thermometer 
55P31. 

In the course of investigations the amount of heat 
transferred to the flowing medium was controlled by the 
value of the electric current supplied to the plates. For 
the quantitative estimation of this heat flux, the notion 
of the ‘flow-overheat’ parameter has been introduced 

H= 
Nfl-t 

p U&O~ + U&/2) 
100% (20) 

where N denotes the electric power supplied to each 
plate separately. During the entire experiment the 

r 
55HOl 5SD25 

7 Ml0 Tf t 

55Mol 

7 Ml0 c- piiq 

1 

55p61 and 554=31- e ,&-u’, ,7,i,ug 
-- 

55F61and 55P7l - u* 1, 4s 2, ix 1 2 

FIG. 3. The block diagram of the hot-wire setup. 

parameter H did not exceed 1.86 which allowed us to 
rank this type of flow with the family of slightly 
nonisothermal flows, and justified the assumption of 
constant fluid density. All the measurements, taken at 
the mean-flow velocity Us, = 11 m s- ‘, were performed 
in a number of control planes xi = const perpendi- 
cular to the wake axis and were within the limits 
6t <xi < 16t 

4. EXPERIMENTAL RESULTS 

4.1. Mean velocity and temperature evolution 
The mean velocity and temperature distributions 

corresponding to the maximum value of flow-overheat 
parameter H and determined in consecutive control 
planes x1 = const have been presented in Fig. 4 in 
nondimensional form 

m) = 2 u 

u,,- Ul 
lmax- Ulmin 

m) = 2 @ 
O-O,, 

mm - @min 

CLOTH 
RAOIAI 

PROBES MEASURING 
HONEYCOMB 

FILTER 9 SCREENS 

I I 

CASCADE FRp;$:ND SECT’oN 
PLATES 

SETTLING 

CHAIMBER I 

CpORX;EyIRE 

I II 

FIG. 2. The scheme of the experimental facility. 
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FIG. 4. The normalized mean velocity and temperature 
distributions for H = 1.86. 

where the arithmetic average values (see Fig. 1) are 

use = 05(U1~~~+ Ulmin) 

o,, = OS(O,,, + amin). 
(21) 

Figure 4 reveals excellent agreement between 
the experimental data and the theoretical function 
F = F, = cos 2xq given by equation (13) except for 
the nearest distance x1 = 6t considered here, where the 
velocity as well as the temperature profiles have not 
yet achieved their universal shape independent of the 
streamwise coordinate xi. Starting from the location 
x1 = 8t the arithmetic average values U,, and O,, 
become equal to the quantities U, and Or,, defined by 
equations (1) and (2), so that the mean velocity and 
temperature scales may be identified with 

u* = 0~5(U1max-Ulmin) 

o* = OS(O,,,- ami”). 

The downstream evolution of mean velocity and 
temperature fields may be characterized by parameters 

which at the distance x > 8t may be expressed in the 
form 

/!I(xJ = u*/uu; /3&l) = 0*/o&$. 

At the distance x1 > 8t the functions B(xJ and &(x1) 
are represented in log-log cordinates (Fig. 5) by the 
straight lines with the slopes K and K~, respectively, 
which verifies the power-law relations used to describe 
the decay of mean velocity and temperature scales. It is 
interesting to note that within the experimental error 
the exponent K is practically independent of flow 
overheat, while the exponent rco seems to be a slightly 
increasing function of parameter H. 

H* 29:2-I 

6 

lOOI 
4 6 8 10 14 ,+/t 

FIG. 5. The decay of nonuniformity parameters of mean 
velocity and temperature fields. 

4.2. The decay of turbulent quantities 
The turbulence structure in a cascade-wake-flow 

shows a high degree of anisotropy. According to 
experimental data UT and UT components of turbulent 
normal stresses are of the same order of magnitude 
while the remaining component uf is evidently smaller 
than the former ones. It is also interesting to note that 
only the UT component increases slightly with the 
growth of flow overheat, especially in the near-flow 
region. This tendency has also been observed by Kuhn 
in a similar type of flow. 

The exemplary lateral distributions of normal ufand 
shear uluZ Reynolds stresses normalized by their 
maximum values (I&., and (ui),,, have been 
presented in Fig. 6. Except for the nearest station 

0.6 

FIG. 6. The normalized distributions of the normal and shear 
stresses for H = 1.86. 
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x1 = 6t the empirical results seem to group fairly well 
about the common curves, which in the case of shear 
stresses may be approximated by equation (14a). The 
experimental scatter of the results is, however, evidently 
greater than that shown in Fig. 4 for mean quantity 
distributions. it may be attributed partly to the lower 
measuring accuracy and partly to the fact that 
turbulence quantities, in contrast to the mean ones, 
reveal their universal profiles in a considerably later 
stage of decay. 

The evolution of normal turbulent stresses UT 
measured in two control planes x2 = 0 and x2 = t/2 is 
shown in Fig. 7. It is easy to see that whereas the curves 
corresponding to x2 = 0 linearize themselves in a log- 
log plot at a comparatively early stage, the ones 
determined in the pIane x2 = t/2 take their rectilinear 
character at a considerably greater distance from the 
plates. This phenomenon is probably caused by the 
intense mixing of two separate boundary layers flowing 
down from the adjacent plates of the cascade and 
merging finally together in the plane x2 = t/2. At the 
distance approximately x1 = lot all the curves 
discussed above become almost parallel, confirming 
the power-law dependence u*’ w xT2’ expressed by 
equation (15), where k, = k2 = k, = k. 

In Fig. 7 the decay of turbulent shear stress 
normalized by Uh has also been shown. For 
comparison a straight line with the slope k, 2 calculated 
from equation (17) is also plotted. Since kl 2 > 2kl, one 

2 

10' 

0 

6 

4 

3 

lOI 

6 

6 

L 6 8 10 IL x,/t 

FIG. 7. The downstream evolution of the normal and shear 
turbulent stresses. 
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FOG. 8. The normalized distributions and turbulent heat-flux 
for H = 1.86. 

can see that according to the previous predictions 
turbulent shear stress decays in the downstream 
direction more rapidly than the normal ones. 

In nonisothermal flows the velocity fluctuations are 
accompanied with the random fluctuations of 
temperature. The lateral ~st~butions of ~(~)/~(O) 
and us/,,,,, have been presented in Fig. 8 for the 
maximum value of parameter H = 1.86. In the near- 
flow region one can observe the characteristic maxima 
of F(q) (q % 0.22 at x1 = 6t) which move towards the 
wake axis with the growth of coordinate x1. It is the 
effect of warmer boundary layers flowing down from 
the plates and the intense transverse heat diffusion 
which tends to flatten the profiles of temperature 
fluctuations in a far-flow region. 

Turbulent heat flux is expressed here by the 
correlation uii. Experimental results of its lateral 
~stributions normalized by the rna~rn~ value 

(G%l*X show a rather good agreement with the 
theoretical curve given by equation (14b) except for the 
near-flow region. 

By analogy with Fig. 7 demonstrating the streamwise 
evolution of Reynolds stresses, Fig. 9 presents the decay 
of tem~rature ~uct~tio~ 91 corresponding to the 
maximum flow overheat and determined in two control 
planes x2 = 0 and x2 = t/2. Starting from the distance 
xi Y 10t both the curves plotted here in the log-log 
coordinates become mutually parallel straight lines 
with the slope 2kg N 1,2, practically independent of 
parameter H. 

Evolution of the maximum values of (UT),, have 
also been illustrated in Fig. 9, this time for the various 
flow-overheat parameters. All the curves plotted here 
exhibit the rectilinear character for x1 > lot which 
proves the validity of the power-law relation ii3 
N x-“z~ with the exponent k,g depending slightly on 
the value of parameter H. 
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FIG. 9. The decay of temperature fluctuations and maximum 
lateral heat flux. 

4.3. Eddy diffusion coeficients and turbulent Prandtl 
number 

Experimental data presented before enable us to 
determine both the coefficients of eddy viscosity vT and 
turbulent heat diffusion %. They may be calculated 
from the definitions given by equations (5) and (6) using 
measured values ofcorrelations uluz and uias well as 
the quantities U 1 and 0 of the mean flow. According to 
the usual predictions both these coefficients appear to 
have nearly constant values in the wake cross-sections 
being at the same time the inversely proportional 
functions of the streamwise coordinate x1 (Fig. lOa). 

The turbulent Prandtl number obtained as the ratio 
of experimentally determined transport coefficients v= 
and a, has been confronted in Fig. lob with the values 
calculated from equation (19) derived for the semi- 

FIG. 10. The downstream evolution of: (a) eddy viscosity vT 
and heat diffusion a, coefficients; (b) turbulent Prandtl 

number Pr,. 

‘OL-” 1.0 1.2 1.4 1.6 H 
b’ ’ ’ ’ ‘1 

h 

1 
0.8 1.0 1.2 1.L 18 H 

FIG. 11. The graphical varification of relations (17). 

preserving region of the cascade-wake-flow. As can be 
seen, the compared results show the surprisingly good 
agreement, indicating at the same time that the 
turbulent Prandtl number has a constant value in the 
entire semi-preserving flow region. 

5. CONCLUDING REMARKS 

The experimental data presented above have 
confirmed the existence ofthe semi-preserving region in 
a far (x > lot) nonisothermal cascade-wake-flow. All 
the characteristics velocity and temperature scales, 
different for the mean and turbulent motions show, in 
this region, the power-law dependence upon the 
streamwise coordinate x1, with the power indices 
which, according to Fig. 11, fulfill the conditions 

k,, = ~+l > 2k, kzg = xe+l > k+k, 

resulting from the transport equations of momentum 
and heat, respectively. It should be emphasized, 
however, that the idea of semi-preservation does not 
exclude the concept of self-similarity, which may be 
regarded as the final stage of the flow evolution at the 
extremely far distance behind the cascade plates. 

It has been also shown that in order to find the 
turbulent Prandtl number there is no need to measure 
the correlations uluz and ~7, but it suffices to 
determine the evolution of mean velocity and 
temperature fields. The relationship (19) derived on the 
basis of semi-preservation hypothesis seems to be 
accurate enough and enables us to determine the value 
of Pr, in a simple way, without the use of hot-wire or 
LDA techniques. 
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SEMI-PRESERVATION DE LA QUANTITE DE MOUVEMENT ET DU TRANSFERT 
THERMIQUE DANS LES ECOULEMENTS A SILLAGE EN CASCADE 

R&+um6--On prbente 1’idQ de la semi-preservation dans les ecoulements a sillage en cascade non isotherme. 
En opposition avec le concept de self-similitude, l’evolution des Ccoulements semi-preserves est d&rite en 
termes d’echelles caractiristiques de vitesse et de temperature, separtes pour les mouvements moyen et 
turbulent. Les equations de quantite de mouvement et de l’tnergie permettent de dtduire les correlations 
mutuelles entre les Cchelles individuelles et de d&river des formules simples pour le nombre de Prandtl 
turbulent Pr: en fonction des parametres de l’ecoulement moyen seulement. Finalement les predictions 

theoriques sont confront&es avec les donnees experimentales des auteurs. 

“QUASI-ERHALTUNG” VON IMPULS- UND WARMETRANSPORT IN 
NACHLAUFSTRGMUNGEN HINTER SCHAUFELGITTERN 

Znsammenfassnng-In dieser Arbeit wird die Idee der Quasi-Erhaltung in nichtisothermen Nachlauf- 
Striimungen hinter Schaufelgittern vorgestellt. Die Entwicklung von quasi-erhaltenden Striimungen wird 
durch charakteristische Geschwindigkeits- und TemperaturmaDstlbe, getrennt nach Haupt- und 
Turbulenzbewegung, beschrieben. Die Transportgleichungen filr Impuls und Wlrme erlauben es, filr die 
einzelnen Mall&&e ineinander iiberfiihrende Korrelationen herzuleiten. Dadurch 1aBt sich eine einfache 
Beziehung fur die turbulente Prandtl-Zahl entwickeln, in der diese nur noch durch Terme der Haupt- 
Striimungsparameter ausgedriickt wird. Zuletzt werden die theoretischen Vorhersagen mit den 

experimentellen Daten des Autors verglichen. 

HEIIOJIHAII ABTOMOAEJIbHOCTb IIEPEHOCA HMI-IYJIbCA II TEl-IJIA BO 
B3AMMO~EI?CTBYIOIIIkX CJIEAAX 

hIIOTaUW-ki3JIOXCeHa KOHIWlUEiR HelIOJIHOii aBTOMOLWIbHOCTN B HCA30TepMH'ieCKBX TC'ieHrtaX,O6pa- 

30BaHHbIX KBCKUIOM CJWIOB. B OTJIWWE OT aBTOMOlZWIbHOI'0 pa3BrtTWl 3BOJIIOWR BHH3 II0 nOTOKy 

Te’iCHLiii C HCllOJlHOfi ~BTOMO~C.UbHOCTbH) IIOJId OlIUCbIBaCTCR C IIOMOUbEO XapaKTCpHbIX MaCIIITa6OB 

CKOPOCTH H TCM"CpaTypb,,paSnH'IHbIXAnllC~nHCrO li Typ6yneHTHOrOnBamCHu~.YpaBHeHss WqleHOCa 

AMIIyJIbCa Pi TCIlJIa II03BOJlRIOT YCTaHOBHTb HetIOCpeLICTBCHHyIO CBIlJb MC)KKnj' MaCmTa6aMH &i BbIBCCTA 

"pOCTylo~OpMynynnKTyp6ynCHTHOrO WTCJIa &naHnTJUI,KaK I$YHK~UU TO.lIbKO OCpCnHCHHbIX IlapaMeT- 

POB.nPUBOllllTCXCpaBHeHBC TCOpeTWieCKI4X ~3yJIbTaTOBC 3KCnCPBMCHTanbHbIMIILIBHHbIM)I,nOnyrCH- 

HblMB aeropahln. 


